74 research outputs found

    the contribution of mass spectrometry based proteomics to understanding epigenetics

    Get PDF
    Chromatin is a macromolecular complex composed of DNA and histones that regulate gene expression and nuclear architecture. The concerted action of DNA methylation, histone post-translational modifications and chromatin-associated proteins control the epigenetic regulation of the genome, ultimately determining cell fate and the transcriptional outputs of differentiated cells. Deregulation of this complex machinery leads to disease states, and exploiting epigenetic drugs is becoming increasingly attractive for therapeutic intervention. Mass spectrometry (MS)-based proteomics emerged as a powerful tool complementary to genomic approaches for epigenetic research, allowing the unbiased and comprehensive analysis of histone post-translational modifications and the characterization of chromatin constituents and chromatin-associated proteins. Furthermore, MS holds great promise for epigenetic biomarker discovery and represents a useful tool for deconvolution of epigenetic drug targets. Here, we will provide an ov..

    Biochemical systems approaches for the analysis of histone modification readout.

    Get PDF
    Abstract Chromatin is the macromolecular nucleoprotein complex that governs the organization of genetic material in the nucleus of eukaryotic cells. In chromatin, DNA is packed with histone proteins into nucleosomes. Core histones are prototypes of hyper-modified proteins, being decorated by a large number of site-specific reversible and irreversible post-translational modifications (PTMs), which contribute to the maintenance and modulation of chromatin plasticity, gene activation, and a variety of other biological processes and disease states. The observations of the variety, frequency and co-occurrence of histone modifications in distinct patterns at specific genomic loci have led to the idea that hPTMs can create a molecular barcode, read by effector proteins that translate it into a specific transcriptional state, or process, on the underlying DNA. However, despite the fact that this histone-code hypothesis was proposed more than 10 years ago, the molecular details of its working mechanisms are only partially characterized. In particular, two questions deserve specific investigation: how the different modifications associate and synergize into patterns and how these PTM configurations are read and translated by multi-protein complexes into a specific functional outcome on the genome. Mass spectrometry (MS) has emerged as a versatile tool to investigate chromatin biology, useful for both identifying and validating hPTMs, and to dissect the molecular determinants of histone modification readout systems. We review here the MS techniques and the proteomics methods that have been developed to address these fundamental questions in epigenetics research, emphasizing approaches based on the proteomic dissection of distinct native chromatin regions, with a critical evaluation of their present challenges and future potential. This article is part of a Special Issue entitled: Molecular mechanisms of histone modification function

    enrichment of histones from patient samples for mass spectrometry based analysis of post translational modifications

    Get PDF
    Abstract Aberrations in histone post-translational modifications (PTMs) have been implicated with the development of numerous pathologies, including cancer. Therefore, profiling histone PTMs in patient samples could provide information useful for the identification of epigenetic biomarkers, as well as the discovery of potential novel targets. While antibody-based methods have been traditionally employed to analyze histone PTM in clinical samples, mass spectrometry (MS) can provide a more comprehensive, unbiased and quantitative view on histones and their PTMs. To combine the power of MS-based methods and the potential offered by histone PTM profiling of clinical samples, we have recently developed a series of methods for the extraction and enrichment of histones from different types of patient samples, including formalin-fixed paraffin-embedded tissues, fresh- and optimal cutting temperature-frozen tissues, and primary cells. Here, we provide a detailed description of these protocols, together with indications on the expected results and the most suitable workflow to be used downstream of each procedure

    Yin Yang 1 extends the Myc-related transcription factors network in embryonic stem cells

    Get PDF
    The Yin Yang 1 (YY1) transcription factor is a master regulator of development, essential for early embryogenesis and adult tissues formation. YY1 is the mammalian orthologue of Pleiohomeotic, one of the transcription factors that binds Polycomb DNA response elements in Drosophila melanogaster and mediates Polycomb group proteins (PcG) recruitment to DNA. Despite several publications pointing at YY1 having a similar role in mammalians, others showed features of YY1 that are not compatible with PcG functions. Here, we show that, in mouse Embryonic Stem (ES) cells, YY1 has genome-wide PcG-independent activities while it is still stably associated with the INO80 chromatin-remodeling complex, as well as with novel RNA helicase activities. YY1 binds chromatin in close proximity of the transcription start site of highly expressed genes. Loss of YY1 functions preferentially led to a down-regulation of target genes expression, as well as to an up-regulation of several small non-coding RNAs, suggesting a role for YY1 in regulating small RNA biogenesis. Finally, we found that YY1 is a novel player of Myc-related transcription factors and that its coordinated binding at promoters potentiates gene expression, proposing YY1 as an active component of the Myc transcription network that links ES to cancer cells

    Mass Spectrometry-Based Proteomics to Unveil the Non-coding RNA World

    Get PDF
    The interaction between non-coding RNAs (ncRNAs) and proteins is crucial for the stability, localization and function of the different classes of ncRNAs. Although ncRNAs, when embedded in various ribonucleoprotein (RNP) complexes, control the fundamental processes of gene expression, their biological functions and mechanisms of action are still largely unexplored. Mass Spectrometry (MS)-based proteomics has emerged as powerful tool to study the ncRNA world: on the one hand, by identifying the proteins interacting with distinct ncRNAs; on the other hand, by measuring the impact of ncRNAs on global protein levels. Here, we will first provide a concise overview on the basic principles of MS-based proteomics for systematic protein identification and quantification; then, we will recapitulate the main approaches that have been implemented for the screening of ncRNA interactors and the dissection of ncRNA-protein complex composition. Finally, we will describe examples of various proteomics strategies developed to characterize the effect of ncRNAs on gene expression, with a focus on the systematic identification of microRNA (miRNA) targets

    Site-specific acetylation of ISWI by GCN5

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The tight organisation of eukaryotic genomes as chromatin hinders the interaction of many DNA-binding regulators. The local accessibility of DNA is regulated by many chromatin modifying enzymes, among them the nucleosome remodelling factors. These enzymes couple the hydrolysis of ATP to disruption of histone-DNA interactions, which may lead to partial or complete disassembly of nucleosomes or their sliding on DNA. The diversity of nucleosome remodelling factors is reflected by a multitude of ATPase complexes with distinct subunit composition.</p> <p>Results</p> <p>We found further diversification of remodelling factors by posttranslational modification. The histone acetyltransferase GCN5 can acetylate the <it>Drosophila </it>remodelling ATPase ISWI at a single, conserved lysine, K753, <it>in vivo </it>and <it>in vitro</it>. The target sequence is strikingly similar to the N-terminus of histone H3, where the corresponding lysine, H3K14, can also be acetylated by GCN5. The acetylated form of ISWI represents a minor species presumably associated with the nucleosome remodelling factor NURF.</p> <p>Conclusion</p> <p>Acetylation of histone H3 and ISWI by GCN5 is explained by the sequence similarity between the histone and ISWI around the acetylation site. The common motif RK<sup>T</sup>/<sub>S</sub>xGx(K<sup>ac</sup>)xP<sup>R</sup>/<sub>K </sub>differs from the previously suggested GCN5/PCAF recognition motif GKxxP. This raises the possibility of co-regulation of a nucleosome remodelling factor and its nucleosome substrate through acetylation of related epitopes and suggests a direct crosstalk between two distinct nucleosome modification principles.</p

    PAT-H-MS coupled with laser microdissection to study histone post-translational modifications in selected cell populations from pathology samples

    Get PDF
    Background: Aberrations in histone post-translational modifications (hPTMs) have been linked with various pathologies, including cancer, and could not only represent useful biomarkers but also suggest possible targetable epigenetic mechanisms. We have recently developed an approach, termed pathology tissue analysis of histones by mass spectrometry (PAT-H-MS), that allows performing a comprehensive and quantitative analysis of histone PTMs from formalin-fixed paraffin-embedded pathology samples. Despite its great potential, the application of this technique is limited by tissue heterogeneity. Methods: In this study, we further implemented the PAT-H-MS approach by coupling it with techniques aimed at reducing sample heterogeneity and selecting specific portions or cell populations within the samples, such as manual macrodissection and laser microdissection (LMD). Results: When applied to the analysis of a small set of breast cancer samples, LMD-PAT-H-MS allowed detecting more marked changes between luminal A-like and triple negative patients as compared with the classical approach. These changes included not only the already known H3 K27me3 and K9me3 marks, but also H3 K36me1, which was found increased in triple negative samples and validated on a larger cohort of patients, and could represent a potential novel marker distinguishing breast cancer subtypes. Conclusions: These results show the feasibility of applying techniques to reduce sample heterogeneity, including laser microdissection, to the PAT-H-MS protocol, providing new tools in clinical epigenetics and opening new avenues for the comprehensive analysis of histone post-translational modifications in selected cell populations

    The High Mobility Group (Hmg) Boxes of the Nuclear Protein Hmg1 Induce Chemotaxis and Cytoskeleton Reorganization in Rat Smooth Muscle Cells

    Get PDF
    HMG1 (high mobility group 1) is a ubiquitous and abundant chromatin component. However, HMG1 can be secreted by activated macrophages and monocytes, and can act as a mediator of inflammation and endotoxic lethality. Here we document a role of extracellular HMG1 in cell migration. HMG1 (and its individual DNA-binding domains) stimulated migration of rat smooth muscle cells in chemotaxis, chemokinesis, and wound healing assays. HMG1 induced rapid and transient changes of cell shape, and actin cytoskeleton reorganization leading to an elongated polarized morphology typical of motile cells. These effects were inhibited by antibodies directed against the receptor of advanced glycation endproducts, indicating that the receptor of advanced glycation endproducts is the receptor mediating the HMG1-dependent migratory responses. Pertussis toxin and the mitogen-activated protein kinase kinase inhibitor PD98059 also blocked HMG1-induced rat smooth muscle cell migration, suggesting that a Gi/o protein and mitogen-activated protein kinases are required for the HMG1 signaling pathway. We also show that HMG1 can be released by damage or necrosis of a variety of cell types, including endothelial cells. Thus, HMG1 has all the hallmarks of a molecule that can promote atherosclerosis and restenosis after vascular damage
    corecore